Altered expression of uncoupling protein 2 in GLP-1-producing cells after chronic high glucose exposure: implications for the pathogenesis of diabetes mellitus

Author:

Urbano Francesca1,Filippello Agnese1,Di Pino Antonino1,Barbagallo Davide2,Di Mauro Stefania1,Pappalardo Alessandro1,Rabuazzo Agata Maria1,Purrello Michele2,Purrello Francesco1,Piro Salvatore1

Affiliation:

1. Department of Clinical and Experimental Medicine, Garibaldi-Nesima Hospital, University of Catania, Catania, Italy; and

2. Department of BioMedical Sciences and BioTechnology, section of Biology and Genetics Giovanni Sichel, Unit of Molecular, Genome and Complex Systems BioMedicine, University of Catania, Catania, Italy

Abstract

Glucagon-like peptide-1 (GLP-1) is a gut L-cell hormone that enhances glucose-stimulated insulin secretion. Several approaches that prevent GLP-1 degradation or activate the GLP-1 receptor are being used to treat type 2 diabetes mellitus (T2DM) patients. In T2DM, GLP-1 secretion has been suggested to be impaired, and this defect appears to be a consequence rather than a cause of impaired glucose homeostasis. However, although defective GLP-1 secretion has been correlated with insulin resistance, little is known about the direct effects of chronic high glucose concentrations, which are typical in diabetes patients, on GLP-1-secreting cell function. In the present study, we demonstrate that glucotoxicity directly affects GLP-1 secretion in GLUTag cells chronically exposed to high glucose. Our results indicate that this abnormality is associated with a decrease in ATP production due to the elevated expression of mitochondrial uncoupling protein 2 (UCP2). Furthermore, UCP2 inhibition using small interfering RNA (siRNA) and the application of glibenclamide, an ATP-sensitive potassium (KATP+) channel blocker, reverse the GLP-1 secretion defect induced by chronic high-glucose treatment. These results show that glucotoxicity diminishes the secretory responsiveness of GLP-1-secreting cells to acute glucose stimulation. We conclude that the loss of the incretin effect, as observed in T2DM patients, could at least partially depend on hyperglycemia, which is typical in diabetes patients. Such an understanding may not only provide new insight into diabetes complications but also ultimately contribute to the identification of novel molecular targets within intestinal L-cells for controlling and improving endogenous GLP-1 secretion.

Funder

Ministero Università e Ricerca (2011)

Società Italiana di Diabetologia (SID) and Diabete e Ricerca FO.DI.RI.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3