Protein Uncoupling as an Innovative Practice in Diabetes Mellitus Treatment: A Metabolic Disorder

Author:

Chaudhary Rishabh1ORCID,Gupta Sumeet1ORCID,Chauhan Samrat2ORCID

Affiliation:

1. M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133206, India

2. Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India

Abstract

Background: Uncoupling proteins (UCPs) are unpaired electron carriers that uncouple oxygen intake by the electron transport chain from ATP production in the inner membrane of the mitochondria. The physiological activities of UCPs have been hotly contested, and the involvement of UCPs in the pathogenesis and progression of diabetes mellitus is among the greatest concerns. UCPs are hypothesised to be triggered by superoxide and then reduce mitochondrial free radical production, potentially protecting diabetes mellitus patients who are experiencing oxidative stress. Objectives: The objectives of the study are to find out the newest ways to treat diabetes mellitus through protein uncoupling. Methods: Research and review papers are collected from different databases like google scholar, PubMed, Mendeley, Scopus, Science Open, Directory of open access journals, and Education Resources Information Center, using different keywords such as “uncoupling proteins in diabetes mellitus treatment”, “UCP 1”, “UCP 2”, and ‘UCP 3”. Results: UCP1, UCP2, and UCP 3 are potential targets as uncoupling proteins for the treatment of diabetes mellitus for new drugs. New drugs treat the disease by reducing oxidative stress through thermogenesis and energy expenditure. Conclusion: UCP1, UCP2, and UCP3 have a role in fatty acid metabolism, negative control of insulin production, and insulin sensitivity by beta-cells. Polymorphisms in the UCP 1, 2, and 3 genes significantly reduce the risk of developing diabetes mellitus. Protein uncoupling indirectly targets the GPCR and islet of Langerhans. This review summarises the advances in understanding the role of UCP1, UCP2, and UCP3 in diabetes mellitus.

Publisher

Bentham Science Publishers Ltd.

Subject

Immunology and Allergy,Endocrinology, Diabetes and Metabolism

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3