NHLBI workshop report: endothelial cell phenotypes in heart, lung, and blood diseases

Author:

Stevens Troy1,Rosenberg Robert2,Aird William3,Quertermous Thomas4,Johnson Frances L.5,Garcia Joe G. N.6,Hebbel Robert P.7,Tuder Rubin M.8,Garfinkel Susan9

Affiliation:

1. Department of Pharmacology, University of South Alabama College of Medicine, Mobile, Alabama 36688;

2. Department of Cell Biology, Massachusetts Institute of Technology, Cambridge 02139;

3. Molecular Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215;

4. Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford 94305;

5. Palo Alto Veterans Affairs Hospital, Palo Alto, California 94304;

6. Division of Pulmonary and Critical Care Medicine, Johns Hopkins Asthma and Allergy Center, Baltimore, Maryland 21224;

7. Department of Medicine, University of Minnesota, Minneapolis, Minnesota 55455;

8. Department of Pathology, University of Colorado Health Sciences Center, Denver, Colorada 80262; and

9. National Heart, Lung, and Blood Institutes, Division of Lung Diseases, Bethesda, Maryland 20892

Abstract

Endothelium critically regulates systemic and pulmonary vascular function, playing a central role in hemostasis, inflammation, vasoregulation, angiogenesis, and vascular growth. Indeed, the endothelium integrates signals originating in the circulation with those in the vessel wall to coordinate vascular function. This highly metabolic role differs significantly from the historic view of endothelium, in which it was considered to be merely an inert barrier. New lines of evidence may further change our understanding of endothelium, in regard to both its origin and function. Embryological studies suggest that the endothelium arises from different sites, including angiogenesis of endothelium from macrovascular segments and vasculogenesis of endothelium from microcirculatory segments. These findings suggest an inherent phenotypic distinction between endothelial populations based on their developmental origin. Similarly, diverse environmental cues influence endothelial cell phenotype, critical to not only normal function but also the function of a diseased vessel. Consequently, an improved understanding of site-specific endothelial cell function is essential, particularly with consideration to environmental stimuli present both in the healthy vessel and in development of vasculopathic disease states. The need to examine endothelial cell phenotypes in the context of vascular function served as the basis for a recent workshop sponsored by the National Heart, Lung, and Blood Institute (NHLBI). This report is a synopsis of pertinent topics that were discussed, and future goals and research opportunities identified by the participants of the workshop are presented.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 91 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3