Affiliation:
1. Departments of Medicine and Physiology and Biophysics, University of Texas Medical Branch, Galveston, Texas 77555
Abstract
Neurotrophins are expressed in the adult kidney, but their significance is unclear. We showed previously that nerve growth factor (NGF) inhibits HCO[Formula: see text] absorption in the rat medullary thick ascending limb (MTAL) via an extracellular signal-regulated kinase (ERK)-dependent pathway. Here we examined whether other neurotrophic factors affect MTAL HCO[Formula: see text] absorption. Brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor had no effect. In contrast, neurotrophin-3 (NT-3, 0.7 nM) inhibited HCO[Formula: see text] absorption by 40% (half-maximal inhibition at ∼0.4 nM). Inhibition by NT-3 was additive to inhibition by NGF. Inhibitors of ERK activation that block inhibition by NGF had no effect on inhibition by NT-3. In contrast, 8-bromo-cAMP or forskolin pretreatment blocked inhibition by NT-3 but not NGF. Inhibition by NT-3 was also blocked by the specific protein kinase A (PKA) inhibitor myristoylated PKI(14–22) amide and by vasopressin, which inhibits HCO[Formula: see text]absorption via cAMP. Inhibitors of phosphatidylinositol 3-kinase or protein kinase C did not affect NT-3-induced inhibition, but inhibition by NT-3 was eliminated by genistein, consistent with involvement of a receptor tyrosine kinase. These results demonstrate that NT-3 inhibits HCO[Formula: see text] absorption via a cAMP- and PKA-dependent pathway. NT-3 and NGF regulate MTAL ion transport through different signal transduction mechanisms. These studies establish a direct role for NT-3 in regulation of renal tubule transport and identify the MTAL as an important target for neurotrophins, which may be involved in the control of renal acid excretion.
Publisher
American Physiological Society
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献