Mechanoregulation of BK channel activity in the mammalian cortical collecting duct: role of protein kinases A and C

Author:

Liu Wen1,Wei Yuan1,Sun Peng2,Wang Wen-Hui2,Kleyman Thomas R.3,Satlin Lisa M.1

Affiliation:

1. Division of Pediatric Nephrology, Department of Pediatrics, Mount Sinai School of Medicine, New York;

2. Department of Pharmacology, New York Medical College, Valhalla, New York; and

3. Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania

Abstract

Flow-stimulated net K secretion ( JK) in the cortical collecting duct (CCD) is mediated by an iberiotoxin (IBX)-sensitive BK channel, and requires an increase in intracellular Ca2+concentration ([Ca2+]i). The α-subunit of the reconstituted BK channel is phosphorylated by PKA and PKC. To test whether the BK channel in the native CCD is regulated by these kinases, JKand net Na absorption ( JNa) were measured at slow (∼1) and fast (∼5 nl·min−1·mm−1) flow rates in rabbit CCDs microperfused in the presence of mPKI, an inhibitor of PKA; calphostin C, which inhibits diacylglycerol binding proteins, including PKC; or bisindolylmaleimide (BIM) and Gö6976, inhibitors of classic and novel PKC isoforms, added to luminal (L) and/or basolateral (B) solutions. L but not B mPKI increased JKin CCDs perfused at a slow flow rate; a subsequent increase in flow rate augmented JKmodestly. B mPKI alone or with L inhibitor abolished flow stimulation of JK. Similarly, L calphostin C increased JKin CCDs perfused at slow flow rates, as did calphostin C in both L and B solutions. The observation that IBX inhibited the L mPKI- and calphostin C-mediated increases in JKat slow flow rates implicated the BK channel in this K flux, a notion suggested by patch-clamp analysis of principal cells. The kinase inhibited by calphostin C was not PKC as L and/or B BIM and Gö6976 failed to enhance JKat the slow flow rate. However, addition of these PKC inhibitors to the B solution alone or with L inhibitor blocked flow stimulation of JK. Interpretation of these results in light of the effects of these inhibitors on the flow-induced elevation of [Ca2+]isuggests that the principal cell apical BK channel is tonically inhibited by PKA and that flow stimulation of JKin the CCD is PKA and PKC dependent. The specific targets of the kinases remain to be identified.

Publisher

American Physiological Society

Subject

Physiology

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3