Author:
Liu Lidong,Hansen Dane R.,Kim Insook,Gilbertson Timothy A.
Abstract
Delayed rectifying K+(DRK) channels in taste cells have been implicated in the regulation of cell excitability and as potential targets for direct and indirect modulation by taste stimuli. In the present study, we have used patch-clamp recording to determine the biophysical properties and pharmacological sensitivity of DRK channels in isolated rat fungiform taste buds. Molecular biological assays at the taste bud and single-cell levels are consistent with the interpretation that taste cells express a variety of DRK channels, including members from each of the three major subfamilies: KCNA, KCNB, and KCNC. Real-time PCR assays were used to quantify expression of the nine DRK channel subtypes. While taste cells express a number of DRK channels, the electrophysiological and molecular biological assays indicate that the Shaker Kv1.5 channel (KCNA5) is the major functional DRK channel expressed in the anterior rat tongue.
Publisher
American Physiological Society
Cited by
55 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献