Rapid kinetics of second messenger production in bitter taste

Author:

Spielman A. I.1,Nagai H.1,Sunavala G.1,Dasso M.1,Breer H.1,Boekhoff I.1,Huque T.1,Whitney G.1,Brand J. G.1

Affiliation:

1. Basic Science Division, New York University College of Dentistry, NewYork, New York, 10010, USA.

Abstract

The tasting of bitter compounds may have evolved as a protective mechanism against ingestion of potentially harmful substances. We have identified second messengers involved in bitter taste and show here for the first time that they are rapid and transient. Using a quench-flow system, we have studied bitter taste signal transduction in a pair of mouse strains that differ in their ability to taste the bitter stimulus sucrose octaacetate (SOA); however, both strains taste the bitter agent denatonium. In both strains of mice, denatonium (10 mM) induced a transient and rapid increase in levels of the second messenger inositol 1,4,5-trisphosphate (IP3) with a maximal production near 75-100 ms after stimulation. In contrast, SOA (100 microM) brought about a similar increase in IP3 only in SOA-taster mice. The response to SOA was potentiated in the presence of GTP (1 microM). The GTP-enhanced SOA-response supports a G protein-mediated response for this bitter compound. The rapid kinetics, transient nature, and specificity of the bitter taste stimulus-induced IP3 formation are consistent with the role of IP3 as a second messenger in the chemoelectrical transduction of bitter taste.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 80 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Novel, Fully Characterised Bovine Taste Bud Cells of Fungiform Papillae;Cells;2021-09-02

2. Electronic Tongue for Food Safety and Quality Assessment;Techniques to Measure Food Safety and Quality;2021

3. Electronic tongue for food sensory evaluation;Evaluation Technologies for Food Quality;2019

4. A Pharmacological Perspective on the Study of Taste;Pharmacological Reviews;2018-12-17

5. TRPM4 and TRPM5 are both required for normal signaling in taste receptor cells;Proceedings of the National Academy of Sciences;2018-01-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3