Affiliation:
1. Leeds Institute of Molecular Medicine, Saint James's University Hospital, Leeds, United Kingdom; and
2. Department of Biochemistry and Molecular Biology, West Virginia University School of Medicine, Morgantown, West Virginia
Abstract
cAMP induces both active Cl−and active K+secretion in mammalian colon. It is generally assumed that a mechanism for K+exit is essential to maintain cells in the hyperpolarized state, thus favoring a sustained Cl−secretion. Both Kcnn4c and Kcnma1 channels are located in colon, and this study addressed the questions of whether Kcnn4c and/or Kcnma1 channels mediate cAMP-induced K+secretion and whether cAMP-induced K+secretion provides the driving force for Cl−secretion. Forskolin (FSK)-enhanced short-circuit current (indicator of net electrogenic ion transport) and K+fluxes were measured simultaneously in colonic mucosa under voltage-clamp conditions. Mucosal Na+orthovanadate (P-type ATPase inhibitor) inhibited active K+absorption normally present in rat distal colon. In the presence of mucosal Na+orthovanadate, serosal FSK induced both K+and Cl−secretion. FSK-induced K+secretion was 1) not inhibited by either mucosal or serosal 1-[(2-chlorophenyl) diphenylmethyl]-1H-pyrazole (TRAM-34; a Kcnn4 channel blocker), 2) inhibited (92%) by mucosal iberiotoxin (Kcnma1 channel blocker), and 3) not affected by mucosal cystic fibrosis transmembrane conductance regulator inhibitor (CFTRinh-172). By contrast, FSK-induced Cl−secretion was 1) completely inhibited by serosal TRAM-34, 2) not inhibited by either mucosal or serosal iberiotoxin, and 3) completely inhibited by mucosal CFTRinh-172. These results indicate that cAMP-induced colonic K+secretion is mediated via Kcnma1 channels located in the apical membrane and most likely contributes to stool K+losses in secretory diarrhea. On the other hand, cAMP-induced colonic Cl−secretion requires the activity of Kcnn4b channels located in the basolateral membrane and is not dependent on the concurrent activation of apical Kcnma1 channels.
Publisher
American Physiological Society
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献