Affiliation:
1. Laboratory of Physiology, Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan; and
2. Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
Abstract
The aim of this study was to define the effects of polysulfide on intracellular Ca2+ concentration ([Ca2+]i) and the underlying machinery, especially from the hydrogen sulfide (H2S) and nitric oxide (NO) perspectives, in rat peritoneal mast cells. We found that a polysulfide donor, Na2S4, increased [Ca2+]i, which is both extracellular and intracellular Ca2+ dependent. Intracellular Ca2+ release induced by Na2S4 was attenuated by the addition of a ryanodine receptor blocker. A slow-releasing H2S donor, GYY4137, dose dependently increased [Ca2+]i that was independent from extracellular Ca2+ influx. The GYY4137-induced [Ca2+]i release was partially attenuated in the presence of the ryanodine receptor blocker. Both polysulfide and H2S donors increased the intracellular NO levels in DAF-2-loaded mast cells, which were abolished by an NO scavenger, cPTIO. Inhibition of NO synthase (NOS) significantly abolished the polysulfide- or H2S-donor-induced [Ca2+]i elevation in the absence of extracellular Ca2+. An NO donor, diethylamine (DEA) NONOate, increased [Ca2+]i in a concentration-dependent manner, in which both extracellular and intracellular Ca2+ are associated. At higher concentrations, the DEA NONOate-induced [Ca2+]i increases were attenuated in the absence of extracellular Ca2+ and by the addition of the ryanodine receptor blocker. H2S and NO dose dependently induced polysulfide production. Curiously, polysulfide, H2S, and NO donors had no effect on mast cell degranulation. Among synthases, cystathionine-γ-lyase, and neuronal NOS seemed to be the major H2S- and NO-producing synthases, respectively. These results indicate that polysulfide acts as a potential signaling molecule that regulates [Ca2+]i homeostasis in rat peritoneal mast cells via a cross talk with NO and H2S.
Publisher
American Physiological Society
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献