Contraction-induced injury to single permeabilized muscle fibers from mdx, transgenic mdx, and control mice

Author:

Lynch Gordon S.1,Rafael Jill A.2,Chamberlain Jeffrey S.2,Faulkner John A.134

Affiliation:

1. Institute of Gerontology and Departments of

2. Human Genetics, and

3. Physiology,

4. Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109-2007

Abstract

Muscle fibers of mdx mice that lack dystrophin are more susceptible to contraction-induced injury, particularly when stretched. In contrast, transgenic mdx (tg -mdx) mice, which overexpress dystrophin, show no morphological or functional signs of dystrophy. Permeabilization disrupts the sarcolemma of fibers from muscles of mdx, tg- mdx, and control mice. We tested the null hypothesis stating that, after single stretches of maximally activated single permeabilized fibers, force deficits do not differ among fibers from extensor digitorum longus muscles of mdx, tg -mdx, or control mice. Fibers were maximally activated by Ca2+ (pCa 4.5) and then stretched through strains of 10%, 20%, or 30% of fiber length ( L f) at a velocity of 0.5 L f/s. Immediately after each strain, the force deficits were not different for fibers from each of the three groups of mice. When collated with studies of membrane-intact fibers in whole muscles of mdx, tg -mdx, and control mice, these results indicate that dystrophic symptoms do not arise from factors within myofibrils but, rather, from disruption of the sarcolemmal integrity that normally provides protection from contraction-induced injury.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3