Transgenic mdx mice expressing dystrophin with a deletion in the actin-binding domain display a "mild Becker" phenotype.

Author:

Corrado K1,Rafael J A1,Mills P L1,Cole N M1,Faulkner J A1,Wang K1,Chamberlain J S1

Affiliation:

1. Department of Chemistry and Biochemistry, University of Texas at Austin 78712-1167, USA.

Abstract

The functional significance of the actin-binding domain of dystrophin, the protein lacking in patients with Duchenne muscular dystrophy, has remained elusive. Patients with deletions of this domain (domain I) typically express low levels of the truncated protein. Whether the moderate to severe phenotypes associated with such deletions result from loss of an essential function, or from reduced levels of a functional protein, is unclear. To address this question, we have generated transgenic mice that express wild-type levels of a dystrophin deleted for the majority of the actin-binding domain. The transgene derived protein lacks amino acids 45-273, removing 2 of 3 in vitro identified actin interacting sites and part of hinge 1. Examination of the effect of this deletion in mice lacking wild-type dystrophin (mdx) suggests that a functional domain I is not essential for prevention of a dystrophic phenotype. However, in contrast to deletions in the central rod domain and to full-length dystrophin, both of which are functional at only 20% of wild-type levels, proteins with a deletion in domain I must be expressed at high levels to prevent a severe dystrophy. These results are also in contrast to the severe dystrophy resulting from truncation of the COOH-terminal domain that links dystrophin to the extracellular matrix. The mild phenotype observed in mice with domain I-deletions indicates that an intact actin-binding domain is not essential, although it does contribute to an important function of dystrophin. These studies also suggest the link between dystrophin and the subsarcolemmal cytoskeleton involves more than a simple attachment of domain I to actin filaments.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 78 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3