Contribution of intermediate filaments to cell stiffness, stiffening, and growth

Author:

Wang Ning1,Stamenović Dimitrije2

Affiliation:

1. Physiology Program, Department of Environmental Health, Harvard School of Public Health, Boston 02115; and

2. Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215

Abstract

It has been shown previously that intermediate filament (IF) gels in vitro exhibit stiffening at high-applied stress, and it was suggested that this stiffening property of IFs might be important for maintaining cell integrity at large deformations (Janmey PA, Evtenever V, Traub P, and Schliwa M, J Cell Biol 113: 155–160, 1991). In this study, the contribution of IFs to cell mechanical behavior was investigated by measuring cell stiffness in response to applied stress in adherent wild-type and vimentin-deficient fibroblasts using magnetic twisting cytometry. It was found that vimentin-deficient cells were less stiff and exhibited less stiffening than wild-type cells, except at the lowest applied stress (10 dyn/cm2) where the difference in the stiffness was not significant. Similar results were obtained from measurements on wild-type fibroblasts and endothelial cells after vimentin IFs were disrupted by acrylamide. If, however, cells were plated over an extended period of time (16 h), they exhibited a significantly greater stiffness before than after acrylamide, even at the lowest applied stress. A possible reason could be that the initially slack IFs became fully extended due to a high degree of cell spreading and thus contributed to the transmission of mechanical stress across the cell. Taken together, these findings were consistent with the notion that IFs play important roles in the mechanical properties of the cell during large deformation. The experimental data also showed that depleting or disrupting IFs reduced, but did not entirely abolish, cell stiffening. This residual stiffening might be attributed to the effect of geometrical realignment of cytoskeletal filaments in the direction of applied load. It was also found that vimentin-deficient cells exhibited a slower rate of proliferation and DNA synthesis than wild-type cells. This could be a direct consequence of the absence of the intracellular IFs that may be necessary for efficient mediation of mechanical signals within the cell. Taken together, results of this study suggest that IFs play important roles in the mechanical properties of cells and in cell growth.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 259 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3