Affiliation:
1. Department of Biomedical Engineering, Boston University, Boston, MA 02215
Abstract
Measurements on adherent cells have shown that spreading affects their mechanics. Highly spread cells are stiffer than less spread cells. The stiffness increases approximately linearly with increasing applied stress and more so in highly spread cells than in less spread cells. In this study, a six-strut tensegrity model of the cytoskeleton is used to analyze the effect of spreading on cellular mechanics. Two configurations are considered: a “round” configuration where a spherically shaped model is anchored to a flat rigid surface at three joints, and a “spread” configuration, where three additional joints of the model are attached to the surface. In both configurations a pulling force is applied at a free joint, distal from the anchoring surface, and the corresponding deformation is determined from equations of equilibrium. The model stiffness is obtained as the ratio of applied force to deformation. It is found that the stiffness changes with spreading consistently with the observations in cells. These findings suggest the possibility that the spreading-induced changes of the mechanical properties of the cell are the result of the concomitant changes in force distribution and microstructural geometry of the cytoskeleton.
Subject
Physiology (medical),Biomedical Engineering
Cited by
65 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献