cAMP- but not Ca(2+)-regulated Cl- conductance is lacking in cystic fibrosis mice epididymides and seminal vesicles

Author:

Leung A. Y.1,Wong P. Y.1,Yankaskas J. R.1,Boucher R. C.1

Affiliation:

1. Department of Physiology, Chinese University of Hong Kong, Hong Kong.

Abstract

Cystic fibrosis (CF) reflects the loss of adenosine 3',5'-cyclic monophosphate (cAMP)-regulated Cl- secretion consequent to mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. In humans, but not mice, with CF, the disease is associated with male infertility. The present study investigated the relative magnitudes of the cAMP pathways and an alternative Ca(2+)-regulated Cl- secretory pathway in primary cultures of the epididymides and the seminal vesicles of normal and CF mice. The basal equivalent short-circuit currents (Ieq) of cultures derived from the epididymides and the seminal vesicles from the CF mice were lower (6.0 +/- 0.6 and 4.0 +/- 1.0 muA/cm2, respectively) than those from normal mice (11.1 +/- 1.0 and 6.6 +/- 0.6 muA/cm2, respectively). Forskolin induced significant Ieq responses in both the epididymis (8.0 +/- 0.7 muA/cm2) and seminal vesicles (4.0 +/- 0.5 muA/cm2) from normal mice, whereas forskolin-induced changes in Ieq in CF mouse epididymis and seminal vesicles were absent, consistent with defective cAMP-CFTR-mediated Cl- secretion in CF mice. Ieq responses to agonists (ionomycin, ATP) that raise intracellular Ca2+ (Ca2+i) were larger than forskolin responses in normal animals (6.6 +/- 0.9 and 13.4 +/- 1.8 muA/cm2, respectively) and were preserved in CF (6.5 +/- 0.9 and 17.1 +/- 1.0 muA/cm2, respectively). We speculate that the fertility of male CF mice is maintained by persistent expression of the predominant alternative Ca(2+)-mediated Cl- transport system in the epididymides and seminal vesicles.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3