Polarized expression of cAMP-activated chloride channels in isolated epithelial cells

Author:

Torres R. J.1,Altenberg G. A.1,Cohn J. A.1,Reuss L.1

Affiliation:

1. Department of Physiology and Biophysics, University of Texas MedicalBranch, Galveston 77555-0641, USA.

Abstract

We have described a preparation of Necturus maculosus gallbladder (NGB) epithelium yielding isolated cells that retain structural and functional polarity ("figure-eight" cells). These cells have a normal membrane voltage and remain polarized for several hours after isolation. Apical and basolateral membrane domains are differentially labeled with hydrophobic fluorescent dyes; freeze-fracture electron microscopy reveals two distinct membrane domains separated by tight junctions; ZO-1, Na+/H+ exchanger (NHE3), and Na(+)-K(+)-ATPase are present in the junctional, apical, and basolateral region, respectively; and cell-attached patch-clamp experiments reveal different K+ currents in the two membrane domains [R. J. Torres, G. A. Altenberg, J. A. Copello, G. Zampighi, and L. Reuss, Am. J. Physiol. 270 (Cell Physiol. 39): C1864-C1874, 1996]. Here, we show that NGB epithelial cells express a protein cross-reactive with an antibody against human cystic fibrosis transmembrane conductance regulator (CFTR). In figure-eight cells, immunoreactivity was restricted to the apical membrane domain. Using intracellular microelectrodes and a novel method of regional superfusion, we found that control cells have high K+ conductances in both membranes and a small basolateral Cl- conductance, similar to findings in the epithelium. Activation of adenylate cyclase with forskolin elicited a large apical membrane Cl- conductance and membrane depolarization. Whole cell patch-clamp studies yielded a forskolin-activated linear Cl- current, with high Cl-/aspartate selectivity. In conclusion, 1) figure-eight cells maintain the conductive membrane properties present in the epithelium, including polarized expression of adenosine 3',5'-cyclic monophosphate (cAMP)-activated Cl- channels, and 2) the cAMP-activated Cl- conductance is underlied by a CFTR homologue.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3