Pkc-Mediated Stimulation of Amphibian Cftr Depends on a Single Phosphorylation Consensus Site. Insertion of This Site Confers Pkc Sensitivity to Human Cftr

Author:

Button Brian1,Reuss Luis1,Altenberg Guillermo A.1

Affiliation:

1. Department of Physiology and Biophysics, University of Texas Medical Branch, Galveston, Texas 77555

Abstract

Mutations of the CFTR, a phosphorylation-regulated Cl− channel, cause cystic fibrosis. Activation of CFTR by PKA stimulation appears to be mediated by a complex interaction between several consensus phosphorylation sites in the regulatory domain (R domain). None of these sites has a critical role in this process. Here, we show that although endogenous phosphorylation by PKC is required for the effect of PKA on CFTR, stimulation of PKC by itself has only a minor effect on human CFTR. In contrast, CFTR from the amphibians Necturus maculosus and Xenopus laevis (XCFTR) can be activated to similar degrees by stimulation of either PKA or PKC. Furthermore, the activation of XCFTR by PKC is independent of the net charge of the R domain, and mutagenesis experiments indicate that a single site (Thr665) is required for the activation of XCFTR. Human CFTR lacks the PKC phosphorylation consensus site that includes Thr665, but insertion of an equivalent site results in a large activation upon PKC stimulation. These observations establish the presence of a novel mechanism of activation of CFTR by phosphorylation of the R domain, i.e., activation by PKC requires a single consensus phosphorylation site and is unrelated to the net charge of the R domain.

Publisher

Rockefeller University Press

Subject

Physiology

Reference35 articles.

1. Nucleoside triphosphates are required to open the CFTR chloride channel;Anderson;Cell.,1991

2. Contribution of R domain phosphoserines to the function of CFTR studied in Fischer rat thyroid epithelia;Baldursson;Am. J. Physiol.,2000

3. Cl− channel activity in Xenopus oocytes expressing the cystic fibrosis gene;Bear;J. Biol. Chem.,1991

4. Regulation of the cystic fibrosis transmembrane conductance regulator Cl− channel by specific protein kinases and protein phosphatases;Berger;J. Biol. Chem.,1993

5. Role of the Xenopus CFTR R-domain in the activation by PKC;Button;FASEB J.,2000

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3