Affiliation:
1. Institute for Integrative Physiology and Center for Systems Biology of O2 Sensing, The University of Chicago, Chicago, Illinois
Abstract
Arterial blood O2 levels are detected by specialized sensory organs called carotid bodies. Voltage-gated Ca2+ channels (VGCCs) are important for carotid body O2 sensing. Given that T-type VGCCs contribute to nociceptive sensation, we hypothesized that they participate in carotid body O2 sensing. The rat carotid body expresses high levels of mRNA encoding the α1H-subunit, and α1H protein is localized to glomus cells, the primary O2-sensing cells in the chemoreceptor tissue, suggesting that CaV3.2 is the major T-type VGCC isoform expressed in the carotid body. Mibefradil and TTA-A2, selective blockers of the T-type VGCC, markedly attenuated elevation of hypoxia-evoked intracellular Ca2+ concentration, secretion of catecholamines from glomus cells, and sensory excitation of the rat carotid body. Similar results were obtained in the carotid body and glomus cells from CaV3.2 knockout ( Cacna1h−/−) mice. Since cystathionine-γ-lyase (CSE)-derived H2S is a critical mediator of the carotid body response to hypoxia, the role of T-type VGCCs in H2S-mediated O2 sensing was examined. Like hypoxia, NaHS, a H2S donor, increased intracellular Ca2+ concentration and augmented carotid body sensory nerve activity in wild-type mice, and these effects were markedly attenuated in Cacna1h−/− mice. In wild-type mice, TTA-A2 markedly attenuated glomus cell and carotid body sensory nerve responses to hypoxia, and these effects were absent in CSE knockout mice. These results demonstrate that CaV3.2 T-type VGCCs contribute to the H2S-mediated carotid body response to hypoxia.
Publisher
American Physiological Society
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献