Ammonium chloride administration prevents training-induced improvements in mitochondrial respiratory function in the soleus muscle of male rats

Author:

Genders Amanda J.12ORCID,Kuang Jujiao13,Saner Nicholas J.14,Botella Javier15ORCID,Bishop David J.1ORCID

Affiliation:

1. Institute for Health and Sport, Victoria University, Melbourne, Australia

2. Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia

3. Australian Institute for Musculoskeletal Sciences, Melbourne, Australia

4. Human Integrative Physiology, Baker Heart and Diabetes Institute, Melbourne, Australia

5. Metabolic Research Unit, Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong, Australia

Abstract

Exercise training can increase both mitochondrial content and mitochondrial respiration. Despite its popularity, high-intensity exercise can be accompanied by mild acidosis (also present in certain pathological states), which may limit exercise-induced adaptations to skeletal muscle mitochondria. The aim of this study was to determine if administration of ammonium chloride (0.05 g/kg) to Wistar rats before each individual exercise session (5 high-intensity exercise sessions/wk for 8 wk) reduced training-induced increases in mitochondrial content (measured by citrate synthase activity and protein content of electron transport system complexes) and respiration (measured in permeabilized muscle fibers). In the soleus muscle, the exercise-training-induced increase in mitochondrial respiration was reduced in rats administered ammonium chloride compared to control animals, but mitochondrial content was not altered. These effects were not present in the white gastrocnemius muscle. In conclusion, ammonium chloride administration before each exercise session over 8 wk reduced improvements in mitochondrial respiration in the soleus muscle but did not alter mitochondrial content. This suggests that mild acidosis may affect training-induced improvements in the respiration of mitochondria in some muscles.

Funder

Department of Education and Training | Australian Research Council

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3