Mitochondria express enhanced quality as well as quantity in association with aerobic fitness across recreationally active individuals up to elite athletes

Author:

Jacobs Robert A.123,Lundby Carsten13

Affiliation:

1. Zurich Center for Integrative Human Physiology, Zurich, Switzerland;

2. Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland; and

3. Institute of Physiology, University of Zurich, Zurich, Switzerland

Abstract

Changes in skeletal muscle respiratory capacity parallel that of aerobic fitness. It is unknown whether mitochondrial content, alone, can fully account for these differences in skeletal muscle respiratory capacity. The aim of the present study was to examine quantitative and qualitative mitochondrial characteristics across four different groups ( n = 6 each), separated by cardiorespiratory fitness. High-resolution respirometry was performed on muscle samples to compare respiratory capacity and efficiency in active, well-trained, highly trained, and elite individuals. Maximal exercise capacity (ml O2·min−1·kg−1) differed across all groups, with mean ± SD values of 51 ± 4, 64 ± 5, 71 ± 2, and 77 ± 3, respectively. Mitochondrial content assessed by citrate synthase activity was higher in elite trained compared with active and well-trained (29 ± 7 vs. 16 ± 4 and 19 ± 4 nmol·min−1·mg wet wt−1, respectively). When normalizing respiration to mitochondrial content, the respiratory capacities during maximal fatty acid oxidation ( P = 0.003), maximal state 3 respiration ( P = 0.021), and total electron transport system capacity ( P = 0.008) improved with respect to maximal exercise capacity. The coupling efficiency of β-oxidation, however, expressed no difference across groups. These data demonstrate the quantitative and qualitative differences that exist in skeletal muscle mitochondrial respiratory capacity and efficiency across individuals that differ in aerobic capacity. Mitochondrial-specific respiration capacities during β-oxidation, maximal oxidative phosphorylation, and electron transport system capacity all correspondingly improve with aerobic capacity, independent of mitochondrial content in human skeletal muscle.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3