Skeletal muscle contractile performance and ADP accumulation in adenylate kinase-deficient mice

Author:

Hancock Chad R.,Janssen Edwin,Terjung Ronald L.

Abstract

The production of AMP by adenylate kinase (AK) and subsequent deamination by AMP deaminase limits ADP accumulation during conditions of high-energy demand in skeletal muscle. The goal of this study was to investigate the consequences of AK deficiency (−/−) on adenine nucleotide management and whole muscle function at high-energy demands. To do this, we examined isometric tetanic contractile performance of the gastrocnemius-plantaris-soleus (GPS) muscle group in situ in AK1−/−mice and wild-type (WT) controls over a range of contraction frequencies (30–120 tetani/min). We found that AK1−/−muscle exhibited a diminished inosine 5′-monophosphate formation rate (14% of WT) and an inordinate accumulation of ADP (∼1.5 mM) at the highest energy demands, compared with WT controls. AK-deficient muscle exhibited similar initial contractile performance (521 ± 9 and 521 ± 10 g tension in WT and AK1−/−muscle, respectively), followed by a significant slowing of relaxation kinetics at the highest energy demands relative to WT controls. This is consistent with a depressed capacity to sequester calcium in the presence of high ADP. However, the overall pattern of fatigue in AK1−/−mice was similar to WT control muscle. Our findings directly demonstrate the importance of AMP formation and subsequent deamination in limiting ADP accumulation. Whole muscle contractile performance was, however, remarkably tolerant of ADP accumulation markedly in excess of what normally occurs in skeletal muscle.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3