Affiliation:
1. Department of Radiology, University of Washington, Seattle 98195.
Abstract
To directly assess the possible role of ADP in muscle fatigue, we have studied the effect of physiological MgADP levels on maximum Ca(2+)-activated isometric force and unloaded shortening velocity (Vus) of single skinned fiber segments from rabbit fast-twitch (psoas) and slow-twitch (soleus) muscles. MgADP concentration was changed in a controlled and well-buffered manner by varying creatine (Cr) in solutions, which also contained MgATP, phosphocreatine (PCr), and creatine kinase (CK). To quantify ADP as a function of Cr added, we determined the apparent equilibrium constant (K') of CK for the conditions of our experiments (pH 7.1, 3 mM Mg2+, 12 degrees C): K' = (sigma [Cr]. sigma [ATP])/(sigma [PCr]. sigma [ADP]) = 260 +/- 3 (SE). In this manner, ADP was altered essentially as occurs during stimulation in vivo but without the concomitant changes in pH and P(i), which affect force and Vus. As ADP (and Cr) was increased, force and Vus decreased in both fiber types; at the highest ADP level used, 200 microM, normalized force was 96.6 +/- 1.7% for psoas (n = 6) and 93.7 +/- 2.8% for soleus (n = 6), and Vus was 80.4 +/- 2.4% for psoas and 91.3 +/- 7.7% for soleus. Diffusion-reaction calculations indicated that radial gradients of metabolite concentrations within fibers could not explain the small effects of ADP on fiber mechanics, and experiments verified that metabolite levels were well buffered within fibers by the CK reaction. Exogenous CK was added to bathing solutions at 290 U/ml, threefold above that necessary to maintain Vus independent of CK concentration; in the absence of PCr and exogenous CK, at least a fourfold increased MgATP was necessary to maintain Vus at the control level. Adenylate kinase activity was not detectable; thus myofibrillar adenosine-triphosphatase and exogenous CK activities were the major determinants of nucleotide levels within activated cells. Cr alone (in absence of PCr and exogenous CK) also decreased force and Vus, presumably by a nonspecific mechanism. Over the physiological range, altered ADP had little or no effect on force or Vus in well-buffered conditions. It is therefore likely that other factors decrease force and Vus during muscular fatigue.
Publisher
American Physiological Society
Cited by
93 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献