Mg2+ buffering in cultured chick ventricular myocytes: quantitation and modulation by Ca2+

Author:

Koss K. L.1,Putnam R. W.1,Grubbs R. D.1

Affiliation:

1. Department of Pharmacology and Toxicology, School of Medicine, WrightState University, Dayton, Ohio 45435.

Abstract

To characterize the Mg2+ buffering of cultured chick ventricular myocytes, cytosolic Mg2+ was increased by liberating Mg2+ normally chelated by ATP upon total depletion of ATP content. Because the total Mg content and cell volume remained constant during this time, the difference between the amount of Mg2+ liberated (2.7 mM) and the 0.9 mM increase in cytosolic Mg2+ activity measured fluorometrically with mag-fura-2 indicates a sizable Mg2+ buffering. A new term, the Mg2+ buffer coefficient (BMg), was derived to quantify this buffering. We also determined that cytosolic Mg2+ activity increased by only 0.6 mM in cells acutely exposed to zero external Ca2+ during ATP depletion. In the absence of extracellular Ca2+, the basal cytosolic Ca2+ activity (alpha Ca2+i) was reduced by 72%, whereas the increase in alpha Ca2+i induced by ATP depletion was substantially blunted; no difference in either the time course of adenine nucleotide changes or the Ca and Mg content was observed. The BMg value calculated for these cells indicates that Mg2+ buffering is substantially greater in the absence of extracellular Ca2+ (2.5) than when extracellular Ca2+ is present (1.4), indicating that alpha Ca2+i affects cytosolic Mg2+ activity in ventricular myocytes. Therefore the Mg2+ buffering of ventricular myocytes appears to be comprised of at least two components: 1) a Ca(2+)-insensitive adenine nucleotide pool and 2) a Ca(2+)-sensitive nonadenine nucleotide pool.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Real-Time Intracellular Mg2+Signaling and Wave Propagation by Subdiffraction-Limit Super-Resolution Microscopy;Bulletin of the Korean Chemical Society;2015-09-28

2. Coronary Circulation;Colloquium Series on Integrated Systems Physiology: From Molecule to Function;2014-07-21

3. Real-Time Observations of Intracellular Mg2+ Signaling and Waves in a Single Living Ventricular Myocyte Cell;Analytical Chemistry;2008-12-16

4. Effect of thyroid hormone on Mg2+ homeostasis and extrusion in cardiac cells;Molecular and Cellular Biochemistry;2008-07-06

5. Effects of anoxia, aglycemia, and acidosis on cytosolic Mg2+, ATP, and pH in rat sensory neurons;American Journal of Physiology-Cell Physiology;2008-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3