Effects of anoxia, aglycemia, and acidosis on cytosolic Mg2+, ATP, and pH in rat sensory neurons

Author:

Henrich Michael,Buckler Keith J.

Abstract

Sensory neurons can detect ischemia and transmit pain from various organs. Whereas the primary stimulus in ischemia is assumed to be acidosis, little is known about how the inevitable metabolic challenge influences neuron function. In this study we have investigated the effects of anoxia, aglycemia, and acidosis upon intracellular Mg2+concentration [Mg2+]iand intracellular pH (pHi) in isolated sensory neurons. Anoxia, anoxic aglycemia, and acidosis all caused a rise in [Mg2+]iand a fall in pHi. The rise in [Mg2+]iin response to acidosis appears to be due to H+competing for intracellular Mg2+binding sites. The effects of anoxia and aglycemia were mimicked by metabolic inhibition and, in a dorsal root ganglia (DRG)-derived cell line, the rise in [Mg2+]iduring metabolic blockade was closely correlated with fall in intracellular ATP concentration ([ATP]i). Increase in [Mg2+]iduring anoxia and aglycemia were therefore assumed to be due to MgATP hydrolysis. Even brief periods of anoxia (<3 min) resulted in rapid internal acidosis and a rise in [Mg2+]iequivalent to a decline in MgATP levels of 15–20%. With more prolonged anoxia (20 min) MgATP depletion is estimated to be around 40%. With anoxic aglycemia, the [Mg2+]irise occurs in two phases: the first beginning almost immediately and the second after an 8- to 10-min delay. Within 20 min of anoxic aglycemia [Mg2+]iwas comparable to that observed following complete metabolic inhibition (dinitrophenol + 2-deoxyglucose, DNP + 2-DOG) indicating a near total loss of MgATP. The consequences of these events therefore need to be considered in the context of sensory neuron function in ischemia.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3