Wound healing and fibrosis: a contrasting role for periostin in skin and the oral mucosa

Author:

Nikoloudaki Georgia1ORCID,Creber Kendal2,Hamilton Douglas W.123ORCID

Affiliation:

1. Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, Canada

2. School of Biomedical Engineering, University of Western Ontario, London, Ontario, Canada

3. Division of Oral Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada

Abstract

Both skin and oral mucosa are characterized by the presence of keratinized epithelium in direct apposition to an underlying collagen-dense connective tissue. Despite significant overlap in structure and physiological function, skin and the oral mucosa exhibit significantly different healing profiles in response to injury. The oral mucosa has a propensity for rapid restoration of barrier function with minimal underlying fibrosis, but in contrast, skin is associated with slower healing and scar formation. Modulators of cell function, matricellular proteins have been shown to play significant roles in cutaneous healing, but their role in restoration of the oral mucosa is poorly defined. As will be discussed in this review, over the last 12 years our research group has been actively investigating the role of the profibrotic matricellular protein periostin in tissue homeostasis and fibrosis, as well as healing, in both skin and gingiva. In the skin, periostin is highly expressed in fibrotic scars and is upregulated during cutaneous wound repair, where it facilitates myofibroblast differentiation. In contrast, in gingival healing, periostin regulates extracellular matrix synthesis but does not appear to be associated with the transition of mesenchymal cells to a contractile phenotype. The significance of these findings will be discussed, with a focus on periostin as a potential therapeutic to augment healing of soft tissues or suppress fibrosis.

Funder

Gouvernement du Canada | Canadian Institutes of Health Research

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3