Cl-dependent K transport in a pure population of volume-regulating human erythrocytes

Author:

O'Neill W. C.1

Affiliation:

1. Department of Medicine, Emory University School of Medicine, Atlanta,Georgia 30303.

Abstract

Swelling of human red cells activates a putative K-Cl cotransport that is not present at normal cell volume and that disappears after several hours. To determine whether regulatory volume decrease (RVD) is occurring in human erythrocytes and is responsible for the inactivation of K-Cl cotransport, the relationship between cell volume and the inactivation and reactivation of volume-sensitive (VS) K-Cl cotransport was studied. VS K influx into high K cells was transient, whereas influx into low K cells (prepared with nystatin), which are unable to shrink via K efflux, remained fully activated. Likewise, VS K efflux into hypotonic medium disappeared after 100 min in a low K medium but remained activated in a high K medium that prevented cell shrinkage. Cells that had been preincubated in hypotonic medium to inactivate VS K-Cl cotransport showed no significant recovery of VS cotransport after a 6-h incubation in isotonic medium but showed full restoration of VS cotransport after treatment with nystatin in isotonic medium to reequilibrate cell water. A pure fraction of volume-regulating (VR) cells was subsequently isolated by preincubating red cells in hypotonic medium and then subjecting them to further hypotonicity to lyse all non-VR cells. The 2.5% of cells that remained consisted of 16% reticulocytes and exhibited a Cl-dependent RVD in hypotonic medium. VS K-Cl cotransport was enriched 10-fold and Na-K-Cl cotransport was enriched 12-fold in these cells, whereas the enrichment of N-ethylmaleimide (NEM)-activated K-Cl cotransport was only threefold.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 167 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3