Affiliation:
1. Department of Medicine, Emory University School of Medicine, Atlanta,Georgia 30303.
Abstract
Swelling of human red cells activates a putative K-Cl cotransport that is not present at normal cell volume and that disappears after several hours. To determine whether regulatory volume decrease (RVD) is occurring in human erythrocytes and is responsible for the inactivation of K-Cl cotransport, the relationship between cell volume and the inactivation and reactivation of volume-sensitive (VS) K-Cl cotransport was studied. VS K influx into high K cells was transient, whereas influx into low K cells (prepared with nystatin), which are unable to shrink via K efflux, remained fully activated. Likewise, VS K efflux into hypotonic medium disappeared after 100 min in a low K medium but remained activated in a high K medium that prevented cell shrinkage. Cells that had been preincubated in hypotonic medium to inactivate VS K-Cl cotransport showed no significant recovery of VS cotransport after a 6-h incubation in isotonic medium but showed full restoration of VS cotransport after treatment with nystatin in isotonic medium to reequilibrate cell water. A pure fraction of volume-regulating (VR) cells was subsequently isolated by preincubating red cells in hypotonic medium and then subjecting them to further hypotonicity to lyse all non-VR cells. The 2.5% of cells that remained consisted of 16% reticulocytes and exhibited a Cl-dependent RVD in hypotonic medium. VS K-Cl cotransport was enriched 10-fold and Na-K-Cl cotransport was enriched 12-fold in these cells, whereas the enrichment of N-ethylmaleimide (NEM)-activated K-Cl cotransport was only threefold.(ABSTRACT TRUNCATED AT 250 WORDS)
Publisher
American Physiological Society
Cited by
167 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献