Activation of ΔF508 CFTR in an epithelial monolayer

Author:

Bebök Zsuzsa1,Venglarik Charles J.12,Pánczél Zita3,Jilling Tamás4,Kirk Kevin L.12,Sorscher Eric J.125

Affiliation:

1. Gregory Fleming James Cystic Fibrosis Research Center, Departments of

2. Physiology and Biophysics and

3. University Medical School of Pécs, Pécs H-7624, Hungary; and

4. Department of Pediatrics, Northwestern University Medical School, Evanston, Illinois 60201

5. Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294;

Abstract

The ΔF508 mutation leads to retention of cystic fibrosis transmembrane conductance regulator (CFTR) in the endoplasmic reticulum and rapid degradation by the proteasome and other proteolytic systems. In stably transfected LLC-PK1(porcine kidney) epithelial cells, ΔF508 CFTR conforms to this paradigm and is not present at the plasma membrane. When LLC-PK1cells or human nasal polyp cells derived from a ΔF508 homozygous patient are grown on plastic dishes and treated with an epithelial differentiating agent (DMSO, 2% for 4 days) or when LLC-PK1cells are grown as polarized monolayers on permeable supports, plasma membrane ΔF508 CFTR is significantly increased. Moreover, when confluent LLC-PK1cells expressing ΔF508 CFTR were treated with DMSO and mounted in an Ussing chamber, a further increase in cAMP-activated short-circuit current (i.e., ∼7 μA/cm2; P < 0.00025 compared with untreated controls) was observed. No plasma membrane CFTR was detected after DMSO treatment in nonepithelial cells (mouse L cells) expressing ΔF508 CFTR. The experiments describe a way to augment ΔF508 CFTR maturation in epithelial cells that appears to act through a novel mechanism and allows insertion of functional ΔF508 CFTR in the plasma membranes of transporting cell monolayers. The results raise the possibility that increased epithelial differentiation might increase the delivery of ΔF508 CFTR from the endoplasmic reticulum to the Golgi, where the ΔF508 protein is shielded from degradative pathways such as the proteasome and allowed to mature.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3