Biotin uptake by human colonic epithelial NCM460 cells: a carrier-mediated process shared with pantothenic acid

Author:

Said Hamid M.12,Ortiz Alvaro12,McCloud Eric12,Dyer David12,Moyer Mary Pat34,Rubin Stanley5

Affiliation:

1. Veterans Affairs Medical Center, Long Beach 90822;

2. University of California School of Medicine, Irvine 92717;

3. University of Texas Health Science Center, San Antonio 78284; and

4. INCELL Corporation, San Antonio, Texas 78288

5. Veterans Affairs Medical Center, Sepulveda, California 91343;

Abstract

Previous studies showed that the normal microflora of the large intestine synthesizes biotin and that the colon is capable of absorbing intraluminally introduced free biotin. Nothing, however, is known about the mechanism of biotin absorption in the large intestine and its regulation. To address these issues, we used the human-derived, nontransformed colonic epithelial cell line NCM460. The initial rate of biotin uptake was found to be 1) temperature and energy dependent, 2) Na+ dependent (coupling ratio of 1:1), 3) saturable as a function of concentration [apparent Michaelis constant ( K m) of 19.7 μM], 4) inhibited by structural analogs with a free carboxyl group at the valeric acid moiety, and 5) competitively inhibited by the vitamin pantothenic acid (inhibition constant of 14.4 μM). Pretreatment with the protein kinase C (PKC) activators phorbol 12-myristate 13-acetate (PMA) and 1,2-dioctanoyl- sn-glycerol significantly inhibited biotin uptake. In contrast, pretreatment with the PKC inhibitors staurosporine and chelerythrine led to a slight, but significant, increase in biotin uptake. The effect of PMA was mediated via a marked decrease in maximal uptake velocity and a slight increase in apparent K m. Pretreatment of cells with modulators of the protein kinase A-mediated pathway, on the other hand, showed no significant effect on biotin uptake. These results demonstrate, for the first time, the functional existence of a Na+-dependent, specialized carrier-mediated system for biotin uptake in colonic epithelial cells. This system is shared with pantothenic acid and appears to be under the regulation of an intracellular PKC-mediated pathway.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3