Extracellular-regulated protein kinase cascades are activated in response to injury in human skeletal muscle

Author:

Aronson Doron1,Wojtaszewski Jørgen F. P.2,Thorell Anders3,Nygren Jonas3,Zangen David1,Richter Erik A.2,Ljungqvist Olle3,Fielding Roger A.4,Goodyear Laurie J.1

Affiliation:

1. Research Division, Joslin Diabetes Center, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, and

2. Copenhagen Muscle Research Center, August Krogh Institute, University of Copenhagen, DK-2100 Copenhagen, Denmark; and

3. Department of Surgery, Karolinska Hospital and Institute, S-10401 Stockholm, Sweden

4. Department of Health Sciences, Sargent College of Allied Health Professions, Boston University, Boston, Massachusetts 02215;

Abstract

The mitogen-activated protein (MAP) kinase signaling pathways are believed to act as critical signal transducers between stress stimuli and transcriptional responses in mammalian cells. However, it is not known whether these signaling cascades also participate in the response to injury in human tissues. To determine whether injury to the vastus lateralis muscle activates MAP kinase signaling in human subjects, two needle biopsies or open muscle biopsies were taken from the same incision site 30–60 min apart. The muscle biopsy procedures resulted in striking increases in dual phosphorylation of the extracellular-regulated kinases (ERK1 and ERK2) and in activity of the downstream substrate, the p90 ribosomal S6 kinase. Raf-1 kinase and MAP kinase kinase, upstream activators of ERK, were also markedly stimulated in all subjects. In addition, c-Jun NH2-terminal kinase and p38 kinase, components of two parallel MAP kinase pathways, were activated following muscle injury. The stimulation of the three MAP kinase cascades was present only in the immediate vicinity of the injury, a finding consistent with a local rather than systemic activation of these signaling cascades in response to injury. These data demonstrate that muscle injury induces the stimulation of the three MAP kinase cascades in human skeletal muscle, suggesting a physiological relevance of these protein kinases in the immediate response to tissue injury and possibly in the initiation of wound healing.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3