Affiliation:
1. Departments of Medicine and Physiology, Cardiovascular Research Institute, University of California, San Francisco, California
Abstract
Aquaporin (AQP)8-facilitated transport of NH3has been suggested recently by increased NH3permeability in Xenopus oocytes and yeast expressing human or rat AQP8. We tested the proposed roles of AQP8-facilitated NH3transport in mammalian physiology by comparative phenotype studies in wild-type vs. AQP8-null mice. AQP8-facilitated NH3transport was confirmed in mammalian cell cultures expressing rat or mouse AQP8, in which the fluorescence of a pH-sensing yellow fluorescent protein was measured in response to ammonia (NH3/NH4+) gradients. Relative AQP8 single-channel NH3-to-water permeability was ∼0.03. AQP8-facilitated NH3and water permeability in a native tissue was confirmed in membrane vesicles isolated from testes of wild-type vs. AQP8-null mice, in which BCECF was used as an intravesicular pH indicator. A series of in vivo studies were done in mice, including 1) serum ammonia measurements before and after ammonia infusion, 2) renal ammonia clearance, 3) colonic ammonia absorption, and 4) liver ammonia accumulation and renal ammonia excretion after acute and chronic ammonia loading. Except for a small reduction in hepatic ammonia accumulation and increase in ammonia excretion in AQP8-null mice loaded with large amounts of ammonia, there were no significant differences in wild-type vs. AQP8-null mice. Our results support the conclusion that AQP8 can facilitate NH3transport but provide evidence against physiologically significant AQP8-facilitated NH3transport in mice.
Publisher
American Physiological Society
Cited by
66 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献