Volume response of quiescent and interleukin 2-stimulated T-lymphocytes to hypotonicity

Author:

Lee S. C.1,Price M.1,Prystowsky M. B.1,Deutsch C.1

Affiliation:

1. Department of Physiology, University of Pennsylvania, Philadelphia19104-6085.

Abstract

Regulatory volume decreased (RVD) in lymphocytes in response to hyptonically induced swelling is dependent on the membrane permeabilities of K+, Cl-, and H2O. We used electronic cell sizing, cell water determination, and the whole cell patch-clamp method to study these membrane permeabilities in the cloned mouse T-lymphocyte, L2. Quiescent L2 cells express low levels of a voltage-gated K+ channel and show no RVD at 25 degrees C. In contrast, L2 cells stimulated to proliferate with the growth factor interleukin 2 have increased K+ conductance and show RVD in response to hypotonicity. RVD in stimulated cells is blocked by quinine and verapamil at levels that also completely block the voltage-gated K+ conductance. Swollen, unstimulated L2 cells can be induced to shrink by addition of the monovalent cation ionophore gramicidin in the presence of impermeant extracellular organic cations; gramicidin also enhances the rate of RVD in stimulated cells. Additionally, the anion transport inhibitor 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS) blocks this gramicidin-facilitated RVD. These results suggest that a minimum requisite Cl- permeability is present even in the unstimulated L2 cells, that a necessary and limiting K+ permeability determines the rate of RVD, and that this K+ permeability increases after growth-factor stimulation as predicted from the direct measurement of voltage-gated K+ conductance. The hydraulic permeability is approximately 70% greater in proliferating L2 cells than in quiescent cells. At 37 degrees C, some RVD occurs in unstimulated L2 cells, and stimulated cells show faster and more complete shrinkage. These results are discussed with respect to the underlying membrane permeabilities and their relation to stimulated cell proliferation.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3