The Volume Activated Potassium Channel KCNK5 is Up-Regulated in Activated Human T Cells, but Volume Regulation is Impaired

Author:

Kirkegaard Signe S.,Strøm Pernille Dyhl,Gammeltoft Steen,Hansen Anker Jon,Hoffmann Else K.

Abstract

Background/Aims: The potential role of the two-pore domain potassium channel KCNK5 (also known as TASK-2 and K2P5.1) in activated T cell physiology has only recently been described. So far KCNK5 has been described to be up-regulated in T cells in multiple sclerosis patients and to be implicated in the volume regulatory mechanism regulatory volume decrease (RVD) in T cells. Methods: We investigated the time-dependent expression pattern of KCNK5 in CD3/CD28 activated human T cells using qPCR and Western blotting and its role in RVD using a Coulter Counter. Results: KCNK5 is highly up-regulated in CD3/CD28 activated T cells both at mRNA (after 24 h) and protein level (72 and 144 h), but despite this up-regulation the RVD response is inhibited. Furthermore, the swelling-activated Cl- permeability in activated T cells is strongly decreased, and the RVD inhibition is predominantly due to the decreased Cl- permeability. Conclusion: The up-regulated KCNK5 in activated human T cells does not play a volume regulatory role, due to decreased Cl- permeability. We speculate that the KCNK5 up-regulation might play a role in hyperpolarization of the cell membrane leading to increased Ca2+ influx and proliferation of T cells.

Publisher

S. Karger AG

Subject

Physiology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3