Phorbol esters inhibit adenylate cyclase activity in cultured collecting tubular cells

Author:

Dixon B. S.1,Breckon R.1,Burke C.1,Anderson R. J.1

Affiliation:

1. Department of Medicine, Veterans Administration Hospital, Denver,Colorado.

Abstract

Activators of protein kinase C, a calcium- and phospholipid-dependent protein kinase, inhibit vasopressin-stimulated water flow in toad bladder. To determine the biochemical mechanisms of this inhibition, we examined the effects of activators of protein kinase C on arginine vasopressin (AVP)-stimulated adenylate cyclase activity in cultured rabbit cortical collecting tubular cells. The phorbol ester, 4 beta-phorbol 12-myristate 13-acetate (PMA), the diacylglycerol, 1-oleyl-2-acetyl glycerol (OAG), and the diacylglycerol kinase inhibitor, R59022, all rapidly activate protein kinase C in collecting tubular cells. Pretreatment with PMA produces a delayed inhibition (greater than or equal to 4 h) of AVP-stimulated adenylate cyclase activity. The 4-h time lag suggests that the effects of protein kinase C are mediated indirectly, possibly as a consequence of stimulating cell proliferation. PMA does not inhibit cholera toxin- or forskolin-stimulated adenylate cyclase activity, suggesting an effect on the vasopressin receptor or coupling of the receptor to the stimulatory guanine nucleotide regulatory protein. Neither prostaglandins nor the inhibitory guanine nucleotide regulatory protein appear to mediate this effect. In contrast, treatment with either OAG or R59022 produces a rapid inhibition of both AVP- and forskolin-stimulated adenylate cyclase activity suggesting a prominent distal site of action, presumably at the catalytic subunit of adenylate cyclase. The results demonstrate that different activators of protein kinase C inhibit AVP-stimulated adenylate cyclase activity by distinctly different mechanisms possibly by altering the substrate specificity or activating multiple forms of the kinase. These results have important implications when using different activators to study the biological effects of protein kinase C.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 59 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3