Regulation of V2R transcription by hypertonicity and V1aR-V2R signal interaction

Author:

Izumi Yuichiro,Nakayama Yushi,Memetimin Hasiyet,Inoue Takeaki,Kohda Yukimasa,Nonoguchi Hiroshi,Tomita Kimio

Abstract

Arginine vasopressin (AVP) and hypertonicity in the renal medulla play a major role in the urine concentration mechanism. Previously, we showed that rat vasopressin V2 receptor (rV2R) promoter activity was increased by vasopressin V2R stimulation and decreased by vasopressin V1a receptor (V1aR) stimulation in a LLC-PK1 cell line stably expressing rat V1aR (LLC-PK1/rV1aR). In the present study, we investigated the effects of hypertonicity on the rV2R promoter activity and on the suppression of rV2R promoter activity by V1aR stimulation in LLC-PK1/rV1aR cells. rV2R promoter activity was increased in NaCl- or mannitol-induced hypertonicity. The hypertonicity-responsive site in the rV2R promoter region was limited to 10 bp, including the Sp1 motif. The increase of V2R promoter activity by hypertonicity was significantly inhibited by a JNK inhibitor (SP600125) and PKA inhibitor (H89). In contrast, rV2R promoter activity was remarkably suppressed by V1aR stimulation in the hypertonic condition rather than in the isotonic condition. The AVP-stimulated intracellular Ca2+ concentration was increased in the hypertonic condition, suggesting the functional activation of V1aR by hypertonicity. In conclusion, 1) V2R promoter activity is increased by hypertonicity via the JNK and PKA pathways, 2) suppression of V2R expression by the V1aR-Ca2+ pathway is enhanced by hypertonicity, and 3) hypertonicity enhances the V1aR-Ca2+ pathway. The counteractivity of V2R and V1aR could be required to maintain minimum urine volume in the dehydrated state.

Publisher

American Physiological Society

Subject

Physiology

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3