Evidence for a Ca-activated inwardly rectifying K channel in human macrophages

Author:

Gallin E. K.1

Affiliation:

1. Department of Physiology, Armed Forces Radiobiology Research Institute, Bethesda, Maryland 20854.

Abstract

Cell-attached patch studies of cultured human macrophages demonstrate that exposure to ionomycin induces inward-rectifying single-channel currents that differ from the voltage-dependent 28 pS inward-rectifying K currents previously described in these cells (J. Membr. Biol. 103: 55-66, 1988). With 150 mM KCl in the electrode and NaCl Hanks' solution in the bath, the ionomycin-induced single-channel conductance for inward currents was 37 pS, and the reversal potential was 57 mV. Channel activity was often associated with a shift in the base-line current level indicating that the cell membrane potential hyperpolarized. The ability of ionomycin to induce channel activity depended on extracellular [Ca] supporting the view that the channels were gated by calcium. Ionomycin-induced channels were permeable to K, relatively impermeable to Cl or Na, exhibited bursting kinetics, and had no apparent voltage dependence. Barium (3 mM in the patch electrode) did not significantly block the ionomycin-induced channel at rest but blocked channel activity when the patch was hyperpolarized beyond the resting membrane potential. Exposure of macrophages to platelet-activating factor, which is known to increase intracellular [Ca] [( Ca]i) (J. Cell Biol. 103: 439-450, 1986), also transiently induced channel activity. In excised patches with 3 microM [Ca]i bursting inward-rectifying channels with a 41 pS conductance were noted that probably correspond to the ionomycin-induced channels present in cell-attached patches. Increasing [Ca]i from 10(-8) to 3 x 10(-6) M induced inward-rectifying channel activity in previously quiescent excised patches.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3