Lipopolysaccharide-induced proliferation and adhesion of U937 cells to endothelial cells involves barium chloride sensitive hyperpolarization

Author:

Erdogan Ali1,Schaefer Christian Alexander2,Most Astrid Kerstin2,Schaefer Martina Barbara3,Mayer Konstantin3,Tillmanns Harald2,Kuhlmann Christoph Ruediger Wolfram2

Affiliation:

1. Department of Cardiology and Angiology, Justus-Liebig-University of Giessen, Giessen, Germany, -giessen.de

2. Department of Cardiology and Angiology, Justus-Liebig-University of Giessen, Giessen, Germany

3. Department of Pulmonology, Justus-Liebig-University of Giessen, Giessen, Germany

Abstract

The adhesion of monocytes to the endothelium and their proliferation in the subendothelial space play an important role in atherosclerosis. Since the proliferation and migration of cells are influenced by the activity of ion channels, the aim of this study was to examine whether barium chloride (Ba2+)-sensitive potassium channels (KiCa) are involved in lipopolysaccharide (LPS)-induced proliferation of monocytic U937 cells, and in the adhesion of these cells to endothelial cells. The adhesion of LPS-stimulated U937 cells to endothelial cells reached a maximum at a concentration of 5 µg/ml. This effect of LPS was completely abolished in the presence of Ba2+ (100 µmol/l). In addition, LPS-induced proliferation was significantly reduced by Ba 2+ (control, 100%; LPS 5 µg/ml, 175%; LPS + Ba2+ 100 µmol/l, 136%; n = 12, P < 0.05). To examine whether KiCa are activated by LPS, changes of U937 membrane potential were determined. LPS (5 µg/ml) caused a hyperpolarization of U937 cells indicating a flux of K+ ions out of the cells. This effect was completely blocked by Ba2+ (100 µmol/l). In conclusion, we demonstrate that LPS activates KiCa in U937 cells, which is responsible for LPS-induced adhesion of these cells to endothelial cells, and to the proliferation of U937 cells.

Publisher

SAGE Publications

Subject

Infectious Diseases,Cell Biology,Molecular Biology,Immunology,Microbiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3