Effect of cyclic stretch on β1D-integrin expression and activation of FAK and RhoA

Author:

Zhang Sarah Jingying,Truskey George A.,Kraus William E.

Abstract

Integrins play a pivotal role in proliferation, differentiation, and survival in skeletal and cardiac myocytes. The β1D-isoform of the β1-integrin is specifically expressed in striated skeletal muscle. However, little is known about the role and the mechanisms by which the splice variant β1D-integrin regulates myogenesis and mechanotransduction. We observed that cyclic mechanical stretch increases β1D-integrin protein levels and activates the downstream cytoskeletal signaling proteins focal adhesion kinase (FAK) and RhoA. Elimination of native β1D-integrin expression by RNA interference in immature developing myoblasts abolished stretch-induced increases in FAK phosphorylation and further downregulated RhoA activity. Blocking of β1D-integrin expression prevented myocellular fusion to form multinucleated mature myotubes. Restoration of human β1D-integrin expression in β1D-integrin-deficient cells partially restored myotube formation. The onset of myofusion also requires the generation of nitric oxide (NO). The release of NO affects cytoskeletal proteins by mediating RhoA activity and protein degradation. Our previous study demonstrated that stretch-induced NO positively modulates mechanical properties of differentiating skeletal myocytes. We found a significant decrease in NO production and apparent elastic modulus in β1D-integrin-deficient cells, suggesting signaling interactions between β1D-integrin and neuronal NO synthase to mediate mechanotransduction and myogenesis in skeletal myocytes. These results suggest that, in addition to regulating differentiation, the β1D-integrin isoform plays a critical role in the response of skeletal myoblasts to cyclic stretch by activating the downstream components of FAK and RhoA activity and affecting NO release.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3