Sodium transport and intracellular sodium activity in cultured human nasal epithelium

Author:

Willumsen N. J.1,Boucher R. C.1

Affiliation:

1. Department of Medicine, School of Medicine, University of NorthCarolina, Chapel Hill 27514.

Abstract

Human airway epithelia are predominantly Na(+)-absorbing epithelia. To investigate the mechanisms for Na+ absorption across airway epithelia, the driving forces and paths for Na+ translocation across each membrane were examined with double-barreled Na(+)-selective microelectrodes in cultured human nasal epithelium (HNE). Under control conditions, intracellular Na+ activity (acNa) was 23 +/- 1 mM (n = 44 preparations, 393 impalements). Amiloride (10(-4) M) hyperpolarized the apical membrane and increased the fractional apical membrane resistance but did not affect acNa. Exposure to Na(+)-free luminal solution induced bioelectric responses similar to amiloride but also reduced acNa to 8 +/- 1 mM. Reduction of luminal Na+ concentration ([Na+]) in the presence of amiloride also reduced acNa without further changes in bioelectric parameters. Reduction of serosal [Na+] decreased aNac, a response blocked by bumetanide (10(-4) M). Ouabain (10(-4) M, serosal) led to a reduction in equivalent short-circuit current (Ieq) and increase in acNa. We conclude that 1) acNa is higher in HNE than in most mammalian epithelial cells, 2) the apical membrane expresses a conductive Na+ path, and 3) the basolateral membrane transports Na+ via the Na(+)-K(+)-adenosinetriphosphatase and a Na(+)-K(+)-2Cl- cotransport system.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 78 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. CFTR dysfunction leads to defective bacterial eradication on cystic fibrosis airways;Frontiers in Physiology;2024-04-18

2. Volume Regulation in Epithelia;Physiology in Health and Disease;2020

3. A physiologically-motivated model of cystic fibrosis liquid and solute transport dynamics across primary human nasal epithelia;Journal of Pharmacokinetics and Pharmacodynamics;2019-09-07

4. Mathematical model reveals role of nucleotide signaling in airway surface liquid homeostasis and its dysregulation in cystic fibrosis;Proceedings of the National Academy of Sciences;2017-08-14

5. Volume Regulation in Epithelia;Ion Channels and Transporters of Epithelia in Health and Disease;2015-12-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3