Effects of amphotericin B on ion and fluid movement across dog tracheal epithelium

Author:

Nathanson I.,Widdicombe J. H.,Nadel J. A.

Abstract

Ion fluxes or fluid flow were measured across sheets of dog tracheal epithelium mounted in Ussing chambers or a special apparatus, respectively. Under short-circuit conditions, luminal amphotericin B (3 X 10(-5) M) caused an inhibition of net Cl secretion and an increase in net Na absorption across paired tissues. In paired tissues under resting open-circuit conditions, there was no significant net transepithelial flux of either Cl or Na. Amphotericin B induced significant net fluxes of both Cl and Na toward the serosal side. In separate tissues from the same animals, there was no significant transepithelial fluid movement under resting conditions. Amphotericin B caused a net absorption of fluid. The absorption of salt and fluid in amphotericin B-treated tissues was abolished by ouabain. We conclude that stimulation of active Na transport by amphotericin B leads to fluid absorption. In vivo, the movement of fluid across the dog tracheal epithelium may be dependent on a balance between active Cl secretion and active Na absorption.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fluid Transport Across Airway Epithelia;Ciba Foundation Symposium 109 - Mucus and Mucosa;2008-05-30

2. Oral Breathing Increases Pth and Vocal Effort by Superficial Drying of Vocal Fold Mucosa;Journal of Voice;2002-06

3. Phonatory Effects of Body Fluid Removal;Journal of Speech, Language, and Hearing Research;2001-04

4. Interaction between ion transporters and the mucociliary transport system in dog and baboon;Journal of Applied Physiology;1997-10-01

5. Retinal pigment epithelial transport mechanisms and their contributions to the electroretinogram;Progress in Retinal and Eye Research;1997-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3