Fluorescent stilbene (BADS) binding proteins in anion-transporting epithelia

Author:

Pearce S. F.1,Zadunaisky J. A.1

Affiliation:

1. Department of Physiology and Biophysics, New York University School ofMedicine, New York 10016.

Abstract

Chloride transport occurs at the interface between the internal and external environments of a cell where chloride uptake or efflux is regulated through a variety of mechanisms that involve cotransport of cations, exchange mechanism with anions, or movement through channels. One of these mechanisms, a chloride-bicarbonate exchange found in the human red blood cell, is well characterized and is mediated by a protein commonly known as band 3. To ascertain the presence of this or other mechanisms in epithelia, the sensitivity of epithelial membranes toward stilbenes was examined. Structure function activities of stilbene derivatives with red cell ghosts show that stilbene molecules block anion transport sites. One of these stilbenes, 4-benzamido-4'-aminostilbene-2-2'-disulfonic acid (BADS), chosen for its property of enhanced fluorescence on binding to hydrophobic sites, was used as a probe to examine the presence or absence of similar sites on epithelial membranes. With the use of nonlinear curve fitting, a single class of sites was found for BADS in the rat kidney cortex (1.6 microM), rat kidney medulla (2.1 microM), rat small intestine (2.2 microM), rat pancreatic islets (5.8 microM), frog cornea (4.3 microM), and shark rectal gland (1.5 microM). In the presence of chloride, the affinity for BADS decreased in all tissues except the frog corneal epithelium where it remained unchanged. The binding of BADS could be displaced by loop diuretics (furosemide, bumetanide, and piretanide) and thiocyanate anion in the kidney, intestine, and shark rectal gland; 50% displacement occurred at approximately 40 microM concentrations for furosemide with an order of magnitude less for bumetanide. The near-millimolar concentrations required for the displacement of BADS by loop diuretics indicate that this effect is nonspecific. However, the effect of chloride, thiocyanate, and loop diuretics on the binding of BADS indicates that BADS possibly interacts with an anion site.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3