Paraoxonase 2 is an ER chaperone that regulates the epithelial Na+ channel

Author:

Shi Shujie1ORCID,Buck Teresa M.2,Nickerson Andrew J.1,Brodsky Jeffrey L.2,Kleyman Thomas R.134ORCID

Affiliation:

1. Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania

2. Deparment of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania

3. Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania

4. Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania

Abstract

The mammalian paraoxonases (PONs) have been linked to protection against oxidative stress. However, the physiological roles of members in this family (PON1, PON2, and PON3) are still being characterized. PON2 and PON3 are expressed in the aldosterone-sensitive distal nephron of the kidney and have been shown to negatively regulate expression of the epithelial sodium channel (ENaC), a trimeric ion channel that orchestrates salt and water homeostasis. To date, the nature of this phenomenon has not been explored. Therefore, to investigate the mechanism by which PON2 regulates ENaC, we expressed PON2 along with the ENaC subunits in fisher rat thyroid (FRT) cells, a system that is amenable to biochemical analyses of ENaC assembly and trafficking. We found that PON2 primarily resides in the endoplasmic reticulum (ER) in FRT cells, and its expression reduces the abundance of each ENaC subunit, reflecting enhanced subunit turnover. In contrast, no effect on the levels of mRNAs encoding the ENaC subunits was evident. Inhibition of lysosome function with chloroquine or NH4Cl did not alter the inhibitory effect of PON2 on ENaC expression. In contrast, PON2 accelerates ENaC degradation in a proteasome-dependent manner and acts before ENaC subunit ubiquitination. As a result of enhanced ENaC subunit ubiquitination and degradation, both channel surface expression and ENaC-mediated Na+ transport in FRT cells were reduced by PON2. Together, our data suggest that PON2 functions as an ER chaperone to monitor ENaC biogenesis and redirects the channel for ER-associated degradation.

Funder

HHS | NIH | National Heart, Lung, and Blood Institute

HHS | NIH | National Institute of Diabetes and Digestive and Kidney Diseases

HHS | NIH | National Institute of General Medical Sciences

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3