Augmented reality-based learning for the comprehension of cardiac physiology in undergraduate biomedical students

Author:

Gonzalez Alexis A.1,Lizana Pablo A.2,Pino Sonia3,Miller Brant G.4,Merino Cristian1

Affiliation:

1. Institute of Chemistry, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile

2. Laboratory of Morphological Sciences, Institute of Biology, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile

3. Center for Research in Educational Technologies (Costa Digital), Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile

4. Department of Curriculum and Instruction, University of Idaho, Moscow, Idaho

Abstract

The integrated mechanisms of heart contraction are some of the most complex processes for undergraduate biomedical students to understand. Visual models have the potential to enhance learning environments by providing visual representations of complex mechanisms. Despite their benefits, the use of visual models in undergraduate classrooms is still limited. For this study, we tested the effect of a learning sequence of activities related to the cardiac cycle using an augmented reality (AR) application for smartphones and tablets. We were interested in understanding the ability of students to draw and label figures reflecting cardiac function after experiencing the learning sequence using AR. Undergraduate students of the biomedical sciences (control n = 43, experimental n = 58) were enrolled in the course, and their drawings were evaluated using multiple levels of complexity (1 = basic to 5 = complex) through a pre-/posttest structure that included a learning sequence based on AR in the experimental group and regular lecture-based activities in the control group. The complexity of students’ drawings was evaluated on the anatomical, physiological, and molecular aspects of heart contraction. We used Cohen’s kappa index for interrater reliability when determining the complexity of drawings. Control and experimental groups showed no differences in baseline knowledge (preexamination quiz). The students who experienced the AR activities showed an increase in the complexity of representation levels in posttest results and also showed a significant difference in scores for the final exam in the heart physiology course. Our results indicate that using AR enhances the comprehension of anatomical and physiological concepts of the cardiac cycle for undergraduate biomedical students.

Funder

MINEDUC | CONICYT | Fondo de Fomento al Desarrollo Científico y Tecnológico

Centro de cooperación para el fomento, fortalecimiento y transferencia de buenas prácticas que apoyan, cultivan, adaptan, comunican, innovan y acogen a la comunidad universitaria

Programa Erasmus de la Unión Europea

Publisher

American Physiological Society

Subject

General Medicine,Physiology,Education

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3