Origins of Abnormal Excitability in Biceps Brachii Motoneurons of Spastic-Paretic Stroke Survivors

Author:

Mottram Carol J.1,Suresh Nina L.1,Heckman C. J.2,Gorassini Monica A.3,Rymer William Z.1

Affiliation:

1. Sensory Motor Performance Program, Rehabilitation Institute of Chicago;

2. Department of Physiology and Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, Illinois; and

3. Department of Biomedical Engineering and Centre for Neuroscience, University of Alberta, Edmonton, Alberta, Canada

Abstract

Stroke survivors often exhibit abnormal motoneuron excitability, manifested clinically as spasticity with exaggerated stretch reflexes in resting muscles. We examined whether this abnormal excitability is a result of increased activation of intrinsic voltage-dependent persistent inward currents (PICs) or whether it is a result of enhanced synaptic inputs to the motoneuron. This distinction was made by recording firing rate profiles of pairs of motor units during isometric contractions of elbow flexor muscles. To estimate PIC amplitude, the discharge of the lower-threshold (reporter) motor unit of the pair was used to estimate the synaptic input to the higher-threshold (test) motor unit. The estimated synaptic input required to recruit the test unit was compared with the synaptic input when the test unit was derecruited (Δ F) and this served as an estimate of the intrinsic (PIC) contribution to motoneuron firing. We found that PIC estimates were not larger in spastic-paretic motoneurons (Δ F = 4.0 ± 1.6 pps) compared with contralateral (4.6 ± 1.4 pps) and age-matched healthy control motoneurons (3.8 ± 1.7, all P > 0.1). Instead, following the voluntary contractions, the majority of lower-threshold motor units in spastic-paretic muscles (83%) exhibited spontaneous discharge, compared with 14% of contralateral and 0% of control motor units. Furthermore, there was strong co-modulation of simultaneously active units in spastic muscle. The presence of ongoing, correlated unit activity at “rest,” coupled with firing behavior at recruitment unique to lower-threshold motor units in spastic muscles, suggested that firing changes are likely a result of a low-level depolarizing synaptic drive to the resting motoneuron pool.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3