Sensorimotor adaptation error signals are derived from realistic predictions of movement outcomes

Author:

Wong Aaron L.1,Shelhamer Mark12

Affiliation:

1. Department of Biomedical Engineering and

2. Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland

Abstract

Neural systems that control movement maintain accuracy by adaptively altering motor commands in response to errors. It is often assumed that the error signal that drives adaptation is equivalent to the sensory error observed at the conclusion of a movement; for saccades, this is typically the visual (retinal) error. However, we instead propose that the adaptation error signal is derived as the difference between the observed visual error and a realistic prediction of movement outcome. Using a modified saccade-adaptation task in human subjects, we precisely controlled the amount of error experienced at the conclusion of a movement by back-stepping the target so that the saccade is hypometric (positive retinal error), but less hypometric than if the target had not moved (smaller retinal error than expected). This separates prediction error from both visual errors and motor corrections. Despite positive visual errors and forward-directed motor corrections, we found an adaptive decrease in saccade amplitudes, a finding that is well-explained by the employment of a prediction-based error signal. Furthermore, adaptive changes in movement size were linearly correlated to the disparity between the predicted and observed movement outcomes, in agreement with the forward-model hypothesis of motor learning, which states that adaptation error signals incorporate predictions of motor outcomes computed using a copy of the motor command (efference copy).

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3