Abstract
Whether a saccade is accurate and has reached the target cannot be evaluated during its execution, but relies on post-saccadic feedback. If the eye has missed the target object, a secondary corrective saccade has to be made to align the fovea with the target. If a systematic post-saccadic error occurs, adaptive changes to the oculomotor behavior are made, such as shortening or lengthening the saccade amplitude. Systematic post-saccadic errors are typically attributed internally to erroneous motor commands. The corresponding adaptive changes to the motor command reduce the error and the need for secondary corrective saccades, and, in doing so, restore accuracy and efficiency. However, adaptive changes to the oculomotor behavior also occur if a change in saccade amplitude is beneficial for task performance, or if it is rewarded. Oculomotor learning thus is more complex than reducing a post-saccadic position error. In the current study, we used a novel oculomotor learning paradigm and investigated whether human participants are able to adapt their oculomotor behavior to improve task performance even when they attribute the error externally. The task was to indicate the intended target object among several objects to a simulated human-machine interface by making eye movements. The participants were informed that the system itself could make errors. The decoding process depended on a distorted landing point of the saccade, resulting in decoding errors. Two different types of visual feedback were added to the post-saccadic scene and we compared how participants used the different feedback types to adjust their oculomotor behavior to avoid errors. We found that task performance improved over time, regardless of the type of feedback. Thus, error feedback from the simulated human-machine interface was used for post-saccadic error evaluation. This indicates that 1) artificial visual feedback signals and 2) externally caused errors might drive adaptive changes to oculomotor behavior.
Funder
European Union's Horizon 2020 Research and Innovation programme
Publisher
Public Library of Science (PLoS)