Functional roles of capsaicin-sensitive intrinsic neural circuit in the regulation of esophageal peristalsis in rats: in vivo studies using a novel method

Author:

Shima Takeshi1,Shiina Takahiko1,Naitou Kiyotada1,Nakamori Hiroyuki1,Shimizu Yasutake1

Affiliation:

1. Laboratory of Physiology, Department of Basic Veterinary Science, The United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan

Abstract

A well-developed myenteric plexus exists in the esophagus composed of striated muscle layers, but its functional role in controlling peristaltic movements remains to be clarified. The purpose of this study was to clarify the role of a local neural reflex consisting of capsaicin-sensitive primary afferent neurons and intrinsic neurons in esophageal peristalsis. We firstly devised a method to measure peristaltic movement of esophagus in vivo in rats. Rats were anesthetized with urethane, and esophageal intraluminal pressure and propelled intraluminal liquid volume were recorded. In the experimental system, an intraluminal pressure stimulus evoked periodic changes in intraluminal pressure of the esophagus, which were consistently accompanied by intraluminal liquid propulsion. Bilateral vagotomy abolished changes in intraluminal pressure as well as liquid propulsion. These results indicate that the novel method is appropriate for inducing peristalsis in the esophagus composed of striated muscles. Then, by using the method, we examined functional roles of the local reflex in esophageal peristalsis. For that purpose, we used rats in which capsaicin-sensitive neurons had been destroyed. The esophagus of capsaicin-treated rats showed a multiphasic rise in intraluminal pressure, which may due to noncoordinated contractions of esophageal muscles, whereas a monophasic response was observed in the intact rat esophagus. In addition, destruction of capsaicin-sensitive neurons increased the propelled liquid volume and lowered the pressure threshold for initiating peristalsis. These results suggest that the local neural reflex consisting of capsaicin-sensitive neurons and intrinsic neurons contributes to coordination of peristalsis and suppresses mechanosensory function of vagal afferents in the esophagus.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3