Effect of Rothia mucilaginosa enzymes on gliadin (gluten) structure, deamidation, and immunogenic epitopes relevant to celiac disease

Author:

Tian Na1,Wei Guoxian1,Schuppan Detlef23,Helmerhorst Eva J.1

Affiliation:

1. Department of Molecular and Cell Biology, Henry M. Goldman School of Dental Medicine, Boston, Massachusetts;

2. Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts; and

3. Institute of Translational Immunology and Research Center for Immunology (FZI), University Medical Center, Johannes-Gutenberg-University, Mainz, Germany

Abstract

Rothia mucilaginosa, a natural microbial inhabitant of the oral cavity, cleaves gluten (gliadin) proteins at regions that are resistant to degradation by mammalian enzymes. The aim of this study was to investigate to what extent the R. mucilaginosa cell-associated enzymes abolish gliadin immunogenic properties. Degradation of total gliadins and highly immunogenic gliadin 33-mer or 26-mer peptides was monitored by SDS-PAGE and RP-HPLC, and fragments were sequenced by liquid chromatography and electrospray ionization tandem mass spectrometer (LC-ESI-MS/MS). Peptide deamidation by tissue transglutaminase (TG2), a critical step in rendering the fragments more immunogenic, was assessed by TG2-mediated cross-linking to monodansyl cadaverine (MDC), and by a +1-Da mass difference by LC-ESI-MS. Survival of potential immunogenic gliadin epitopes was determined by use of the R5 antibody-based ELISA. R. mucilaginosa-associated enzymes cleaved gliadins, 33-mer and 26-mer peptides into smaller fragments. TG2-mediated cross-linking showed a perfect inverse relationship with intact 33-mer and 26-mer peptide levels, and major degradation fragments showed a slow rate of MDC cross-linking of 6.18 ± 2.20 AU/min compared with 97.75 ± 10.72 and 84.17 ± 3.25 AU/min for the intact 33-mer and 26-mer, respectively, which was confirmed by reduced TG2-mediated deamidation of the fragments in mass spectrometry. Incubation of gliadins with Rothia cells reduced R5 antibody binding by 20, 82, and 97% after 30 min, 2 h, and 5 h, respectively, which was paralleled by reduced reactivity of enzyme-treated 33-mer and 26-mer peptides in the R5 competitive ELISA. Our broad complementary approach to validate gluten degrading activities qualifies R. mucilaginosa-associated enzymes as promising tools to neutralize T cell immunogenic properties for treatment of celiac disease.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3