Author:
Kolar Satya Sree N.,Barhoumi Rola,Callaway Evelyn S.,Fan Yang-Yi,Wang Naisyin,Lupton Joanne R.,Chapkin Robert S.
Abstract
Butyrate, a short-chain fatty acid fiber fermentation product, induces colonocyte apoptosis in part via a Fas-mediated (extrinsic) pathway. In previous studies, we demonstrated that docosahexaenoic acid (DHA, 22:6Δ4,7,10,13,16,19) enhances the effect of butyrate by increasing mitochondrial lipid oxidation and mitochondrial Ca2+-dependent apoptosis in the colon. In this study, we further examined the mechanism of DHA-butyrate synergism in 1) human colon tumor (HCT-116 isogenic p53+/+ vs. p53−/−) cells and 2) primary cultures of rat colonic crypts. Herein, we show that DHA and butyrate promote apoptosis by enhancing mitochondrial Ca2+accumulation in both isogenic cell lines. Ca2+accumulation and apoptosis were inhibited by blockade of mitochondrial uniporter-mediated Ca2+uptake. In addition, Mito-Q, a mitochondria-targeted antioxidant, also blocked apoptosis induced by DHA and butyrate. In complementary experiments, rats were fed diets supplemented with either corn oil (control, contains no DHA) or fish oil (contains DHA). Colonic crypts were isolated and incubated with or without butyrate, after which the mitochondria-to-cytosol Ca2+ratio and crypt viability were measured. No significant difference ( P > 0.05) in basal mitochondrial Ca2+levels was observed between fish oil- or corn oil-fed animals. In contrast, when fish oil was the dietary lipid source, crypts incubated with butyrate exhibited a significant increase (3.6-fold, P < 0.001) in mitochondrial Ca2+compared with corn oil plus butyrate treatment. On the basis of these data, we propose that the combination of DHA and butyrate compared with butyrate alone further enhances colonocyte apoptosis by inducing a p53-independent, oxidation-sensitive, mitochondrial Ca2+-dependent (intrinsic) pathway.
Publisher
American Physiological Society
Subject
Physiology (medical),Gastroenterology,Hepatology,Physiology
Cited by
47 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献