Interaction between hydrogen sulfide-induced sulfhydration and tyrosine nitration in the KATP channel complex

Author:

Kang Minho1,Hashimoto Atsushi1,Gade Aravind1,Akbarali Hamid I.1

Affiliation:

1. Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia

Abstract

Hydrogen sulfide (H2S) is an endogenous gaseous mediator affecting many physiological and pathophysiological conditions. Enhanced expression of H2S and reactive nitrogen/oxygen species (RNS/ROS) during inflammation alters cellular excitability via modulation of ion channel function. Sulfhydration of cysteine residues and tyrosine nitration are the posttranslational modifications induced by H2S and RNS, respectively. The objective of this study was to define the interaction between tyrosine nitration and cysteine sulfhydration within the ATP-sensitive K+ (KATP) channel complex, a significant target in experimental colitis. A modified biotin switch assay was performed to determine sulfhydration of the KATP channel subunits, Kir6.1, sulphonylurea 2B (SUR2B), and nitrotyrosine measured by immunoblot. NaHS (a donor of H2S) significantly enhanced sulfhydration of SUR2B but not Kir6.1 subunit. 3-Morpholinosydnonimine (SIN-1) (a donor of peroxynitrite) induced nitration of Kir6.1 subunit but not SUR2B. Pretreatment with NaHS reduced the nitration of Kir6.1 by SIN-1 in Chinese hamster ovary cells cotransfected with the two subunits, as well as in enteric glia. Two specific mutations within SUR2B, C24S, and C1455S prevented sulfhydration by NaHS, and these mutations prevented NaHS-induced reduction in tyrosine nitration of Kir6.1. NaHS also reversed peroxynitrite-induced inhibition of smooth muscle contraction. These studies suggest that posttranslational modifications of the two subunits of the KATP channel interact to alter channel function. The studies described herein demonstrate a unique mechanism by which sulfhydration of one subunit modifies tyrosine nitration of another subunit within the same channel complex. This interaction provides a mechanistic insight on the protective effects of H2S in inflammation.

Funder

HHS | National Institutes of Health (NIH)

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3