Role of intestinal sterol transporters Abcg5, Abcg8, and Npc1l1 in cholesterol absorption in mice: gender and age effects

Author:

Duan Li-Ping,Wang Helen H.,Ohashi Akira,Wang David Q.-H.

Abstract

Recent studies have indicated that intestinal cholesterol absorption is a multistep process, which is regulated by multiple genes at the enterocyte level. However, the molecular mechanisms whereby there are gender differences in intestinal cholesterol absorption efficiency and the efficiency of cholesterol absorption increases with age have not yet been fully understood. To explore whether aging increases cholesterol absorption via intestinal sterol transporters, we studied the higher cholesterol-absorbing C57L/J vs. the lower cholesterol-absorbing AKR/J mice at 8 (young adult), 36 (older adult), and 50 (aged) wk of age. To test the hypothesis that estrogen receptor (ER )α plays an important regulatory role in cholesterol absorption, we investigated the gonadectomized mice of both genders treated with 17β-estradiol-releasing pellets at 0, 3, or 6 μg/day and antiestrogenic ICI 182,780 at 125 μg/day. We found that hepatic outputs of biliary cholesterol were significantly increased with age and in response to high levels of estrogen. Aging significantly enhances cholesterol absorption by suppressing expression of the jejunal and ileal sterol efflux transporters [ATP-binding cassette ( Abc) g5 and Abcg8] and upregulating expression of the putative duodenal and jejunal sterol influx transporter Npc1l1. Estrogen significantly augmented cholesterol absorption mostly due to an upregulated expression of intestinal Npc1l1, Abcg5, and Abcg8 via the intestinal ERα pathway, which can be fully abolished by the antagonist. We conclude that ERα activated by estrogen and aging enhances cholesterol absorption by increasing biliary lipid output and mediating intestinal sterol transporters favoring influx of intraluminal cholesterol molecules across the apical membrane of the enterocyte.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3