Cultured monolayers of the dog jejunum with the structural and functional properties resembling the normal epithelium

Author:

Weng Xing-He,Beyenbach Klaus W.,Quaroni Andrea

Abstract

The development of a culture of the normal mammalian jejunum motivated this work. Isolated crypt cells of the dog jejunum were induced to form primary cultures on Snapwell filters. Up to seven subcultures were studied under the electron microscope and in Ussing chambers. Epithelial markers were identified by RT-PCR, Western blot, and immunofluorescent staining. Confluent monolayers exhibit a dense apical brush border, basolateral membrane infoldings, desmosomes, and tight junctions expressing zonula occludens-1, occludin-1, and claudin-3 and -4. In OptiMEM medium fortified with epidermal growth factor, hydrocortisone, and insulin, monolayer transepithelial voltage was −6.8 mV (apical side), transepithelial resistance was 1,050 Ω·cm2, and short-circuit current ( Isc) was 8.1 μA/cm2. Transcellular and paracellular resistances were estimated as 14.8 and 1.1 kΩ·cm2, respectively. Serosal ouabain reduced voltage and current toward zero, as did apical amiloride. The presence of mRNA of α-epithelial Na+channel (ENaC) was confirmed. Na-d-glucose cotransport was identified with an antibody to Na+-glucose cotransporter (SGLT) 1. The unidirectional mucosa-to-serosa Na+flux (19 nmol·min−1·cm−2) was two times as large as the reverse flux, and net transepithelial Na+flux was nearly double the amiloride-sensitive Isc. In plain Ringer solution, the amiloride-sensitive Iscwent toward zero. Under these conditions plus mucosal amiloride, serosal dibutyryl-cAMP elicited a Cl-dependent Iscconsistent with the stimulation of transepithelial Clsecretion. In conclusion, primary cultures and subcultures of the normal mammalian jejunum form polarized epithelial monolayers with 1) the properties of a leaky epithelium, 2) claudins specific to the jejunal tight junction, 3) transepithelial Na+absorption mediated in part by SGLT1 and ENaC, and 4) electrogenic Clsecretion activated by cAMP.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3